

Interactive Web Physics Physics Animations that Run in a Web Browser

Taylor Brockman (Brain Power Software) Jonathan Bennett, Andy Wang, Benjamin Wu (NCSSM)

NCS-AAPT Workshop November 16, 2019

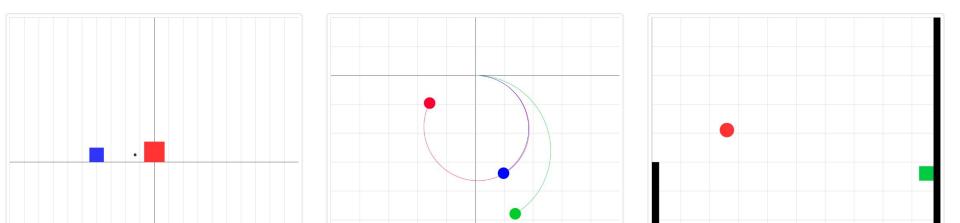
Workshop Agenda

- 1. Origin story, connectivity, and tour of IWP6 Taylor, 10m
- 2. Creating a simple animation with projectile motion Jon, 10m
- 3. Using the IWP6 library of built-in functions to create more complex animations, specifically elastic collision **Ben** 10m
- 4. Simulation with Euler's method with IWP + orbital motion challenge **Andy** 20m
- 5. Q&A and Discussion about ways to use IWP **Everybody** 10m

IWP Origin Story

- 1. Open Source! Founded in 1998, Java Version 1.1, 25+ Students
- 2. "Designer" is a key differentiator that empowers everyone to author new content. Embrace competition and evolution
- 3. Tech transition starting 4 years ago from Java Applet to Web, with a priority of preserving our content library of animations
- 4. Integration with online student systems like WebAssign
- 5. NCSSM Physics instructors, Winters, Bennett. Used for 10+ years in Online, AP Physics 1, Hybrid, Practice & Review, Waves & Optics

Interactive Web Physics 6


www.iwphys.org

Physics animations that run in your web browser and tablets using HTML 5

Packaged Animation Collections

Popular Animations

IWP Animation Library

IWP ships with a complete library of physics animations developed over the past 20 years at NCSSM.

From the homepage <u>www.iwphys.org</u>, click any of the green buttons to view the best of four packaged animation collections:

Packaged Animation Collections

Connectivity

1. Wi-Fi: NCSSM Guest, Conference Specific Username + Password

2. Web: <u>https://www.iwphys.org/</u>, Sign In Top Right

占 Sign In

3. IWP: Username = ncptc1, Password = Peebles ncptc2... ncptc70 IWP Successful Login V

4. Animate one of our popular animations from the home page on your own laptop. Great work, keep it up! Chrome or Firefox please.

Got Issues? You get a special visit from me while the show goes on.

Workshop Agenda 2

1. Origin story, connectivity, and tour of IWP6 - Taylor, 10m

2. Creating a simple animation with projectile motion - Jon, 10m

3. Using the IWP6 library of built-in functions to create more complex animations, specifically elastic collision - **Ben** 10m

4. Simulation with Euler's method with IWP + orbital motion challenge - **Andy** 20m

5. Q&A and Discussion about ways to use IWP - Everybody 10m

Steps to Create a Simple Animation

- 1. Inputs
- 2. Solids

3. Time Range, Window and Graph Window Settings

4. Outputs

5. Save and Play

Setting up Inputs

Inputs

Add New Input

Input 📫			Rer
Input Name	vi	E	
Input Text	Initial Speed		
Initial Value	0		
Units	m/s		
Hidden			

Setting up Solids

Solids

Add New Solid

Solid ‡			Remove
Solid Name	pumpkin	E	
X Path	Parametric		
	X = vi*cos(2*pi*theta/360)*t		
Y Path	Parametric		
	Y = vi*sin(2*pi*theta/360)*t - 4.9*t*t		
Shape	Circle •		
Height	Parametric		
	H = 1		
Width	 Parametric Euler 		
	W = 1		

Setting up Outputs

Outputs

Add New Output

Output 🕽			1
Output Name	x-position	63	
Text	x		
Calculator	Parametric		
	pumpkin.xpos		
Units	m		
Hidden			

Setting up Time, Window, Graph

Window

X Min

X Max

X Grid

X Unit

Author Information

Username	anonymous	••••]
Email		
Name		
Organization		

Time Ra	nge	
Start	0	
Duration	100	
Change	0.1	
Fps	20	

Description

is is a demo animation - a <u>punkin chunkin</u> !	Y Min
	Y Max
	Y Grid
	Y Unit

-10 10 ••• 2 meters -10 10 •••• 2 meters

Graph Window

X Min

X Max

X Grid

Y Min

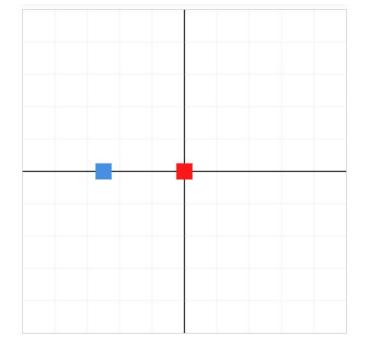
Y Max

Y Grid

0	
10	
2	
-5	
-5	

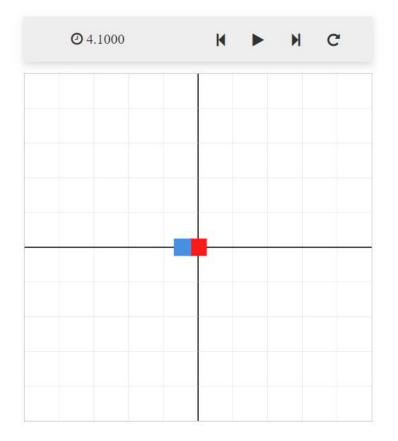
Finished Animation !

Interactive Web Physics 6				Open Designer	Save Screenshot	Animator Guide
③ 0	K Þ	H C	Animate	Graph	O Time	Axes
			newAnimation.iwp			
			InputsInitial Speed10Launch Angle45	m/s degrees	Output: y 0.0 x 0.0	0000 m

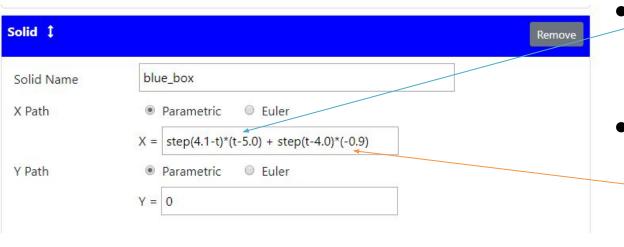


Workshop Agenda 3

- 1. Origin story, connectivity, and tour of IWP6 Taylor, 10m
- 2. Creating a simple animation with projectile motion Jon, 10m
- 3. Using the IWP6 library of built-in functions to create more complex animations, specifically elastic collision **Ben** 10m
- 4. Simulation with Euler's method with IWP + orbital motion challenge **Andy** 20m
- 5. Q&A and Discussion about ways to use IWP Everybody 10m


Creating an Elastic Collision Animation (10m)

- GOAL: Animate an Elastic Collision between the blue box traveling to the right and the red box initially at rest
- Will make use of the parametric calculator and the step function



- step(x) = 0 if $x \le 0$
- step(x) = 1 if x > 0
- Boxes collide at x = -0.9mand t = 4.1s
- Using the step function we can parametrize the path for the boxes before and after the collision

Example, cont.

- For t < 4.1 the blue box starts at -5.0 m and moves right at a speed of 1.0 m/s
- For t ≥ 4.1 the blue box stays at the position -0.9m where it collided with the red box

X = step(4.1-t)*(t-5.0) + step(t-4.0)*(-0.9)

Graphing, Trails, Vectors

Name:	blue_box								
Calculator: X Path									
Parametric 💌	X Path = rm)/(bm+rm)-4.1*(bm-rm)/(bm+rm)-0.9)						-		
Calculator: Y Path				*			T		
Parametric v	Y Path = 0								
					VP Animate				- 🗆 ×
Color				0.0	2	4.0	6.0	8.0	blue_box 🔻
	Change			6.0					○ x Pos ○ y Pos ● x Vel ○ y Vel
Shape				4.0					🔾 x Accel 🔾 y Accel
Type = Rectangle				2.0					
Width = 1	/® Draw O	bject Trails?	Λ						
Height = 1	🖉 🖉 🖉 🖉 🖉 🖉	ectors?		-2.0					
Theta = 0	📃 🖉 🔍 🔍 🔍	🔾 x Accel		-4.0					
	🔾 y Vel	🔾 y Accel							
	⊖ Vel	Accel		-6.0					
	Grapha	ble?		-8.0					
	🔾 x Pos	🔾 y Pos		-10.0					
	🔍 🖲 x Vel	🔾 v Vel		Graph Time		10		PVA max:	10
) y Accel	/	Time : Time :	nin:	0		PVA min: PVA grid:	-10
							Apph		

Creating Inputs (mass)

Input ‡		Remove
Input Name	rm	
Input Text	mass of red box	
Initial Value	1	
Units	kg	
Hidden		
Input 1		Remove
Input Name	bm	
Input Text	mass of blue box	
Initial Value	1	
Units	kg	
Hidden		

Making the Elastic Collision

$$v_{\text{blue},f} = \left(\frac{m_{\text{blue}} - m_{\text{red}}}{m_{\text{blue}} + m_{\text{red}}}\right) \cdot v_{\text{blue, i}}$$

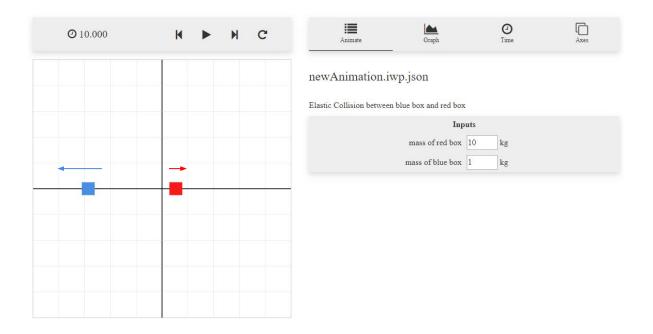
$$v_{\mathrm{red},f} = \left(\frac{2 \cdot m_{\mathrm{blue}}}{m_{\mathrm{blue}} + m_{\mathrm{red}}}\right) \cdot v_{\mathrm{blue, i}}$$

- Initial velocity of the blue box set to 1.0 m/s
- We can modify the step function to incorporate the formulas to the left

Making the Elastic Collision, cont.

Blue Box X-Path

• step(4.1-t)*(t-5.0) +


step(t-4.0)*(t*(bm-rm)/(bm+rm)-4.1*(bm-rm)/(bm+rm)-0.9)

Red Box X-Path

step(t-4.0)*(t*(2*bm)/(bm+rm)-8.2*bm/(bm+rm))

Making the Elastic Collision, cont.

red box has greater mass than blue box

Making the Elastic Collision, cont.

Ø 8.8000	H F H	c	Animate	Graph	O Time	Axes
			newAnimation.iv			
			Elastic Collision between	Inputs mass of red box 1 mass of blue box 10	kg	

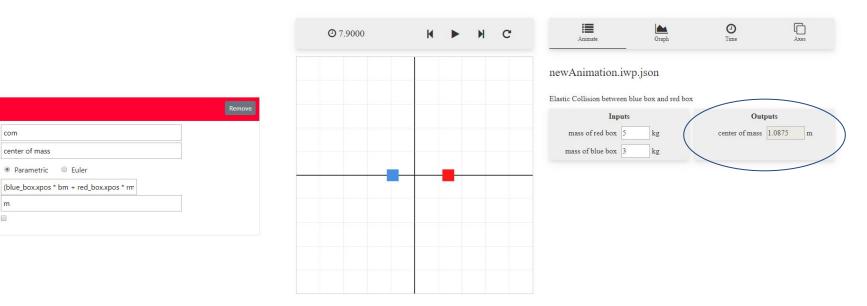
blue box has greater mass than red box

Output 1

Text

Units

Hidden

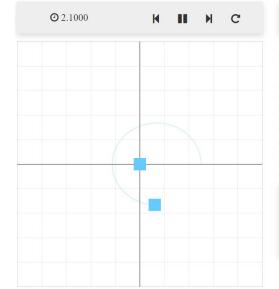

Output Name

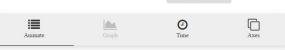
Calculator

com

m

Outputs


Workshop Agenda 4

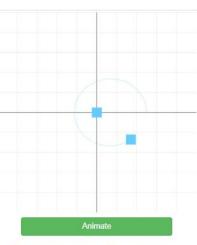

- 1. Origin story, connectivity, and tour of IWP6 Taylor, 10m
- 2. Creating a simple animation with projectile motion Jon, 10m
- 3. Using the IWP6 library of built-in functions to create more complex animations, specifically elastic collision **Ben** 10m
- <u>4. Simulation with Euler's method with IWP + orbital motion</u> <u>challenge - **Andy** 20m</u>
- 5. Q&A and Discussion about ways to use IWP Everybody 10m

Animating Gravity with Explicit Methods (20m)

- GOAL: Experiment with an animation template of an object orbiting a fixed point Interactive Web Physics 6 Save Screenshot
- New techniques:
 - Euler's Method
 - Object attributes

Animator Guide

Part 3 Gravity - Template.iwp


A blue object orbits a large, fixed mass at the origin. The power of the gravitational force on each of the orbiting objects can be adjusted according to a number of parameters: the mass of each object; the gravitational constant G. In reality, the gravitational force is exactly inversely proportional to the square of the distance between the orbiting object and the origin. This animation replicates this force, but we might also be interested in the behavior of gravity at different powers. Using the designer, edit this animation to allow the user to input a gravitational power which changes the behavior of gravity. In order to compare this generalized gravitational scheme to reality, include two oribiting objects, each with inputtable parameters.

Animating Gravity with Euler's

- Template Features:
 - Orbit and origin solids with trails
 - Mass and gravitational constant inputs
 - x- and y-acceleration for orbiting objects using Euler's

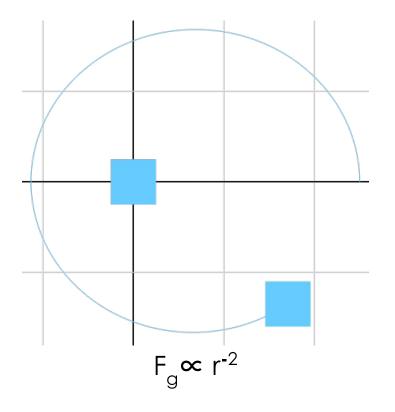
Part 3 Gravity - Template.iwp

A blue object orbits a large, fixed mass at the origin. The power of the gravitational force on each of the orbiting objects can be adjusted according to a number of parameters: the mass of each object, the gravitational constant G. In reality, the gravitational force is exactly inversely proportional to the square of the distance between the orbiting object and the origin. This animation replicates this force, but we might also be interested in the behavior of gravity at different powers. Using the designer, edit this animation to allow the user to input a gravitational power which changes the behavior of gravity. In order to compare this generalized gravitational scheme to reality, include two oribiting objects, each with inputtable parameters.

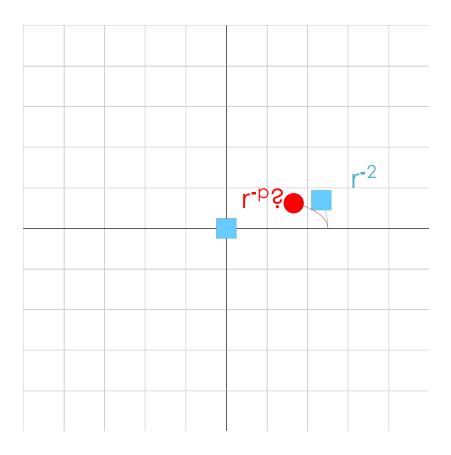
Euler's in IWP

Solids

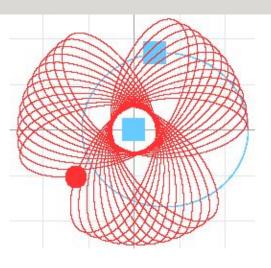
Add New Solid


- Euler's option available in defining x/y-path in solid
- Enables motion to be defined in terms of acceleration

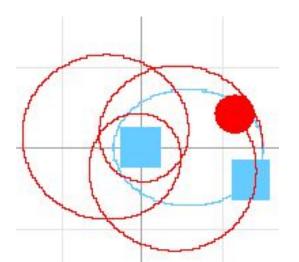
Gravity Parameterization (**B orbits A**)



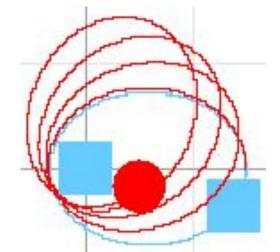
Template Results


CHALLENGE

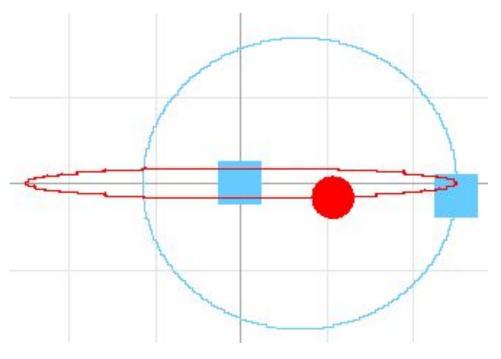
Compare:
$$F_g \propto r^{-p} \quad VS \quad F_g \propto r^{-2}$$



 $F \propto r^{-1}$



RESULT


F ∝ r^{-2.5}

 $F \propto r^{-2.1}$

Only closed cycles:

Blue: $F \propto r^1$ Red: $F \propto r^2$

Workshop Agenda 5

- 1. Origin story, connectivity, and tour of IWP6 Taylor, 10m
- 2. Creating a simple animation with projectile motion Jon, 10m
- 3. Using the IWP6 library of built-in functions to create more complex animations, specifically elastic collision **Ben** 10m
- 4. Simulation with Euler's method with IWP + orbital motion challenge **Andy** 20m
- 5. Q&A and Discussion about ways to use IWP Everybody 10m

Question 1 / 3

How is IWP similar or different from other physics software?

Question 2/3

How could students benefit from using IWP?

Question 3 / 3

What content should we develop to enhance your curriculum?

Interactive Web Physics Physics Animations that Run in a Web Browser

THANK YOU !!

www.iwphys.org

bennett@ncssm.edu

taylor.brockman@gmail.com